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Abstract

In this article, buckling and vibration behavior of a functionally graded material (FGM) sandwich beam having

constrained viscoelastic layer (VEL) is studied in thermal environment by using finite element formulation. The FGM

sandwich beam is assumed to be clamped on both edges. The material properties of FGM are functionally graded in

thickness direction according to volume fraction power law distribution. Temperature dependent material properties of

FGM stiff layer and shear modulus of viscoelastic layer are considered to carry out buckling and vibration analysis.

Numerical studies involving the understanding the effect of power law index, core to stiff layer ratio on the thermal

buckling temperature as well as on vibration has been carried out. In addition influence of temperature on natural

frequencies and loss factors have been examined for FGM sandwich beam.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Special composite materials collectively known as functionally graded material (FGM) has been developed
due to its excellent mechanical and thermal properties. The concept of FGM was proposed in 1984 by a group
of materials scientists, in Sendai, Japan, for thermal barrier or heat shielding properties [1–4]. These types of
inhomogeneous composite materials and systems are presently in the forefront of materials research receiving
worldwide attention and much research activities have been accelerated. The advantage of using these
materials is that they are able to withstand high-temperature gradient environments while maintaining their
structural integrity. It possesses properties that vary gradually and continuously with respect to the spatial
coordinates in order to achieve a required function. The composition is varied from a ceramic rich surface to
metal rich surface with a desired variation of the volume fraction of the two materials in between two surfaces
can be easily manufactured [5]. Initially, FGM were designed as thermal barrier materials for aerospace
application and fusion reactors. Later on, FGM are developed for military, automotive, biomedical
application, semiconductor industry, manufacturing industry and general structural element in thermal
environments [6].
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

A area of the element in xy plane
Ei; i ¼ 1; 2 Young’s modulus of ith stiff layer
F the element thermal load vector
h thickness of the core layer
ht heat transfer coefficient, W/m2K
k thermal conductivity, W/mK
Ke element stiffness matrix
Ke

g element geometric stiffness matrix
lx; ly direction cosines in respective directions
Me element mass matrix
N matrix of shape functions
Nk; k ¼ 1; 2; 3; 4 shape functions corresponding

to node, k

Pcr critical buckling load corresponding to
Tb

q heat flux, W/m2

tc/ts ratio of core to stiff layer
ti; i ¼ 1; 2 thickness of ith stiff layer
T temperature, 1C
Tb buckling temperature
Tk; k ¼ 1; 2; 3; 4 temperature at node, k

T1 ambient temperature, 1C
wp; yp; u1

p; u
2
p; p ¼ 1; 2 degrees of freedom at node

p

z coordinate measured from the neutral
axis of individual layer

ai; i ¼ 1; 2 coefficient of thermal expansion of ith
stiff layer

_d
e

time derivative of de

DTi; i ¼ 1; 2 temperature above ambient of ith
stiff layer

ei; gc; i ¼ 1; 2 normal strain in ith stiff layer and
shear strain in the core, respectively

ei
0; i ¼ 1; 2 normal strain in middle layer of ith

stiff layer
en equal nonlinear strain for each stiff layer
y0 equal bending component of normal

strain for each stiff layer
si; tc; i ¼ 1; 2 normal stress in ith stiff layer and

shear stress in the core, respectively
sit; i ¼ 1; 2 initial normal stress in ith stiff layer
ri; rc; i ¼ 1; 2 density of ith stiff layer and that

of the core
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Damping is very important in structures subjected to dynamic loading because it reduces dynamic stress
level, increases fatigue life. One of the ways of controlling the noise and vibration in structures is to use a
passive damping treatment. The traditional passive control methods for airborne noise include the use of
absorbers, barriers, mufflers, silencers, etc. For reducing structure-borne vibration and noise, several methods
are available. Something just changing the system’s stiffness or mass to alter the resonance frequencies can
reduce the unwanted vibration as long as the excitation frequencies do not change. But in the most cases, the
vibration needs to be isolated or dissipated by using isolator or damping material. Passive damping as a
technology has been dominant in the non-commercial aerospace industry, manufacturing industry since the
early 1960s. Advance in the material technology along with newer and more efficient analytical and
experimental tools for modeling the dynamic behavior of materials and structures have led to many
application such as inlet guide vanes of jet engines, helicopter cabins, exhaust stacks, satellite structures,
equipment panels, antenna structures, truss system, space stations, etc. In general, high damping viscoelastic
material firmly attached to the surface of the structural member to the augment damping in the system,
primarily, by shear deformation. A viscoelastic material exhibits the characteristics of both a viscous fluid and
an elastic solid. It combines the two properties namely it returns to its original shape after being stressed, but
does it slowly enough to oppose the next cycle of vibrations. There are two methods of treatment of
viscoelastic materials namely, free or unconstrained layer treatment and constrained layer treatment. In the
case of constrained layer damping treatment, the damping material is sandwiched between the surface of
the structure and thin metallic facing. The flexural modulus of the constraining layer is comparable to that of
the base structure. During bending, the viscoelastic material is forced to deform in shear due to excessive
difference of the moduli between the viscoelastic material, the base structure and the constraining layer.
Therefore, a considerable amount of energy is dissipated through shear deformation. Passive damping using
sandwich viscoelastic core is one of the ways of suppressing vibration and noise over a wide range of
frequencies. These types of sandwich structures find their application as sub-components in spacecraft,
aerospace, automobile and missile structures. Analysis of sandwich structures has been of interest for many
years [7–12]. Bert [13] gave an introductory review of mathematical models, measures and experimental
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techniques. Khatua and Cheung [14,15] presented a finite element formulation for the analysis of multi-layer
sandwich beams and plates with soft cores. In their work, they have neglected the normal stress developed in
the core and the transverse shear in the stiff layers. Nabi and Ganesan [16] developed a sandwich triangular
plate element based on a modified Ahemad approach. Ramesh and Ganesan [17] have analyzed the damping
characteristics of a three layered sandwich conical shells. Ramasawamy and Ganesan [18] investigated
vibration and damping analysis of fluid filled orthotropic cylindrical shells with constrained viscoelastic
damping. They have used the complex eigenvalue approach and have restricted their numerical studies to the
first axial mode. Saravanan et al. [19] have analyzed the vibration behavior of multilayer fluid-filled tanks by
making use of semi analytical finite element method. Their study concluded that the modal strain energy
method improved the computational efficiency when compared to eigenmode analysis. Rao and Nakara [20]
carried out analysis of vibration of unsymmetrical sandwich beams and plates with viscoelastic cores. Rao [21]
derived the complete set of equations of motion and boundary conditions governing the vibration of sandwich
beams using energy approach. Siesmore and Darvennes [22] have considered the effect of compression energy
of the core on damping in addition to the conventional approach, which uses only shear deformation of the
core for the estimation of damping. Recently, Banerjee [23] has used the dynamic stiffness method for free
vibration analysis of three-layer sandwich beams. Ha [24] developed a procedure for exact buckling of
sandwich beams and framed structures subjected to arbitrary mechanical loading. The work of Lan et al. [25]
presents the thermal buckling of bimodular sandwich beams having thick facings and moderately stiff cores.
In recent years, studies on FGM structures in thermal environments are an attractive emerging area in the
research community [26–30]. Studies on thermal buckling and free vibration analyses of FGM beam are rare
in the literature. Recently, Librescu et al. [31] carried out vibration and stability analysis of thin-walled FGM
beams operating in high temperature environment.

From the literature survey on sandwich beam it is visible that buckling and vibration behavior of FGM
beam under thermal environment has not been investigated. Hence, the present investigation proposes to
investigate the same. Thermal effects considerably affect the buckling and vibration behavior of the FGM
structures. For the evaluation of these phenomena in a thermal environment by finite element procedure the
prerequisite is the calculation of induced thermal stresses in the structure and then using the evaluated stresses
for further analysis. The present finite element formulation is a decoupled thermo mechanical formulation.
The temperatures in the sandwich FGM beam domain are evaluated for the given thermal boundary
conditions using four-noded beam finite element formulation. For buckling and frequency analyses a two-
noded sandwich beam element is used. The estimated temperatures are used for the evaluation of geometric
stiffness matrix, which introduces the effect of prestresses into the buckling and frequency eigenvalue
problems. The material properties of viscoelastic materials depends significantly on environmental condition
such as environment temperature, vibration frequency, pre-load, dynamic load, and environmental humidity.
In the present study the dependence of the shear modulus of the viscoelastic core with temperature is
considered. The average temperature of the viscoelastic core is used for finding the shear modulus value, which
in turn is used to form the element structural stiffness matrix. A parametric study is conducted on viscoelastic
sandwich beam with different core to thickness ratios. The effect of the temperature dependence of the shear
modulus of the core is considered and compared with the case where the shear modulus is assumed to be
constant. In the present study, the variation of FGM material properties with respect to temperature has been
accounted and iterative procedure adopted.

2. Analytical model of FGM material properties

FGMs are typically made from a mixture of ceramic and metal or a combination of different metals.
Ceramic constituent of the material provides the high-temperature resistance due to its low thermal
conductivity. The ductile metal constituent, on the other hand, prevents fracture causes by stresses due
to high-temperature gradient in a very short period of time. Consider an FGM sandwich beam as shown in
Fig. 1.

In the present analysis, it is assumed that the composition of FGM stiff layer is varied from the top to the
bottom surfaces, i.e., the top surface ðZ ¼ �h=2Þ of the beam is ceramic-rich, whereas the bottom surface
ðZ ¼ h=2Þ is metal-rich. In addition material properties are graded throughout the thickness direction
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Fig. 1. Configuration of functionally graded sandwich beam having constrained viscoelastic core.
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according to volume fraction power law distribution. As FGMs are mainly used in high-temperature
environments the constituent materials possess temperature-dependent properties. The properties can be
expressed as follows [6]:

P ¼ P0ðP�1T�1 þ 1þ P1T þ P2T
2 þ P3T

3Þ, (1)

where P0;P�1;P1;P2, and P3 are constants in the cubic fit of the materials property. The materials properties
are expressed in this way so that higher order effects of the temperature on the material properties can be
readily discernible. Volume fraction is a spatial function whereas the properties of the constituents are
functions of temperature. The combination of these functions gives rise to the effective material properties of
FGMs and can be expressed by

Peff ðT ; zÞ ¼ PmðTÞV mðzÞ þ PcðTÞð1� V mðzÞÞ, (2)

where Peff is the effective material property of the FGMs, and Pm and Pc are the temperature dependent
properties metal and ceramic, respectively. Vm is the volume fraction of the metal constituent of the FGM can
be written by

Vm ¼
2zþ h

2h

� �n

; V c ¼ 1� V m, (3)

where volume fraction index n dictates the material variation profile through the beam thickness and may be
varied to obtain the optimum distribution of component materials ð0pnp1Þ.

From above equation, the effective Young’s modulus E, the Poisson ratio v, mass density r and thermal
expansion coefficient a of an FGM beam can be written by

Eeff ¼ ðEm � EcÞ
2zþ h

2h

� �n

þ Ec,

veff ¼ ðvm � vcÞ
2zþ h

2h

� �n

þ vc,

reff ¼ ðrm � rcÞ
2zþ h

2h

� �n

þ rc,

aeff ¼ ðam � acÞ
2zþ h

2h

� �n

þ ac,

keff ¼ ðkm � kcÞ
2zþ h

2h

� �n

þ kc. ð4Þ

2.1. Finite element formulation for temperature evaluation

The thermal boundary conditions and the relative values of the thermal conductivities of the core and stiff
layers influence the temperature distribution in the beam. Temperature in the sandwich beam may vary across
the thickness or along the length or both. To capture this effect two-dimensional four-noded rectangular
element is used. The steady-state Fourier heat conduction equation in two dimensions without internal heat
generation is given by

k
q2T

qx2
þ

q2T
qy2

� �
¼ 0 (5)
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with the associated boundary conditions

lx

qT

qx
þ ly

qT

qy
¼ htðT � T1Þ þ q on surface S1,

T ¼ T0 on surface S2.

The differential equation (5) along with the associated boundary conditions can be turned into equivalent
variational expression, given by

I ¼
1

2

Z Z
A

qT
qx

qT
qy

0
@

1
AK

qT
qx

qT
qy

� �
dA

þ
1

2

Z
S1

qT dsþ
1

2

Z
S1

htðT
2 � 2TT1Þds. ð6Þ

The temperature T can be expressed in terms of nodal temperatures Tk and shape functions Nk as
T ¼

P4
k¼1NkTk. Substituting the value of T in Eq. (6) then minimizing the expression with respect to nodal

temperatures Tk, the following elemental matrix equation can be obtained

Ke
1Te þ Ke

2T
e ¼ Pe

1 þ Pe
2, (7)

where

Ke
1 ¼

Z
A

BT
t KBttdxdy,

Ke
2 ¼ h

Z
S1

NT
t Nt dS,

Pe
1 ¼ htT1

Z
S1

NT
t dS,

Pe
2 ¼ q

Z
S1

NT
t dS,

Nt ¼ ðN1N2N3N4Þ; Te ¼ ðT1T2T3T4Þ
T.

2.2. Finite element formulation for structural analysis

The FGM sandwich beam element is developed based on the displacement field proposed by Khatua and
Cheung [14]. The assumptions made for formulating sandwich beam element are the following:
1.
 The core is soft and viscoelastic having a shear modulus G ¼ ðG�c þ iZG�cÞ and cannot carry any normal
stress.
2.
 Shear stress in the stiff layers is neglected.

3.
 All the points at any cross section of the beam will have same transverse displacement and bending slope.

4.
 The plane section is assumed to remain plane for each core layer.

The deformed shape of any cross section of sandwich beam under loading can be expressed in terms of
transverse displacement of the cross section (w), the bending slope at that cross section (y) and the axial
displacements of top and bottom layers (u1, u2), as shown in Fig. 2(a). Two-noded FGM sandwich beam finite
element is shown in Fig. 2(b). The degrees of freedom associated with each node will be the four above-
mentioned parameters.
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Fig. 2. FGM sandwich beam element.
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The stress–strain relations for a sandwich beam continuum under thermal environment can be written
by [25]

si

tc

 !
¼

Ei 0

0 G�c

 !
ei � aiDTi

gc

 !
; i ¼ 1; 2. (8)

Assuming that each stiff layer will bend about its own neutral axis the total strain energy can be
written by

U1 ¼

Z
ðs1e1 dv1 þ s2e2 dv2 þ tcgc dvcÞ. (9)

By substituting e1 ¼ e10 þ zy0 and e2 ¼ e20 þ zy0 the above expression and performing integration in the
thickness and width directions U1 can be written by

U1 ¼

Z
x

e�TðDe� �D�ethÞdx (10)

e�T ¼ ðy0e10g
cy0e20Þ

T and ethT ¼ ð0a1effDT100a2DT2Þ
T. Superscripts 1, 2, and c indicate the quantities related to

top, bottom, and core layers, respectively. Making use of shape functions in the strain displacement relations
given in Appendix, the strain array e� can be written in terms of nodal displacement de as Bde. Substituting the
expression for e� in Eq. (10) and minimizing the total strain energy with respect to de the following equation
can be obtained: Z

x

BTDBdxðde
Þ ¼

Z
x

BTD�eth dx,

Keðde
Þ ¼ F the, ð11Þ

where Ke ¼
R

x
BTDBdx is the element stiffness matrix, F the ¼

R
x

BTD�eth dx is the element thermal load vector
and de

¼ ðw1; y1; u1
1; u

2
1;w2; y2; u1

2; u
2
2Þ

T.
The expression for the geometric stiffness matrix can be obtained from the expression for work done by the

membrane forces during small transverse displacements of the beam.
The expression for this work is given by

U2 ¼
1

2

Z
s1ten dv1 þ

1

2

Z
s2ten dv2, (12)

U2 ¼
1

2

Z
x

e�nste�nT dx,
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where e�n ¼ ð
ffiffiffiffi
en
p

;
ffiffiffiffi
en
p
Þ. e�n can be written as Bgd

e and substituting this value in Eq. (12) the expression for U2

becomes

U2 ¼
1

2
deTKe

gd
e,

where Ke
g ¼

R
x

BT
g s

tBg dx is the element geometric stiffness matrix.
The expression for total kinetic energy in the sandwich beam element continuum can be written by

KE ¼ 0:5

Z
ðr1eff dv1 þ r2 dv2 þ rc dvcÞ _w2

þ 0:5

Z
ðr1eff dv1 þ 0:5rc dvcÞð _u1Þ

2

þ 0:5

Z
ðr2 dv2 þ 0:5rc dvcÞð _u2Þ

2
. ð13Þ

After performing the integrations in the thickness and width directions, and making use of shape functions
in Eq. (13) the kinetic energy can be written by

KE ¼
1

2
_d

eT
Me _d

e
,

where Me ¼
R

x
NTPN dx is the element mass matrix.

The expressions for D�, Bg, st are given in Appendix. The expressions for B, D, and P can be realized in the
paper by Khatua and Cheung [14]. Expressions for Ke

1, Ke
2, Pe

1, and Pe
2 are given in Rao [31].

3. Results and discussion

This section presents the frequency, damping and buckling behaviors of sandwich beam under thermal
environment. The computer code developed for the analysis has been validated based on the data available in
the literature. Thermal stresses are estimated in the beam and buckling and vibration analyses are carried out.
Present study deals with FGM sandwich beam with clamped–clamped boundary condition. The dimensions of
the beam are given below.

Thickness of each stiff layer ¼ ts ¼ t1 ¼ t2 ¼ 3mm;

Length of the beam ðlÞ ¼ 0:6m:

3.1. Validation

As there is no open literature available on vibration and buckling behavior of FGM sandwich beam it is felt
that result can be compared for isotropic material sandwich beam with that of buckling of isotropic sandwich
beam under mechanical loading by incorporating power law index as n ¼ 0:0, in the present computer code
developed for FGM sandwich beam. For this purpose a clamped–clamped beam subjected to uniform
temperature is analyzed as it leads to constant compressive stresses. In order to validate the buckling code,
fixed–fixed sandwich beam of length 0.5m with thickness of each stiff layer 3mm and having a 3mm thick
core was considered. The beam is subjected to constant temperature so that normal stress is constant through
out the length of the beam. The material properties of the beam are similar to those specified in Fig. 3. Based
on the buckling temperature the compressive stresses and corresponding critical buckling load can be
evaluated. The analytical expression for the critical buckling load of sandwich beams can be found in a paper
by Ha [24]. Table 1 compares the finite element solution and analytical value of critical buckling load and the
results obtained by the present code match well with the results of literature.

In addition damping of viscoelastic sandwich beam without temperature are evaluated and compared with
the value in the existing literature. The computer code developed is validated for its damping behavior for the
dimensions given in Ref. [21]. The dimensions of the beam along with the material properties of the layers are
given in Fig. 3.
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Table 1

Comparison of buckling load

Description Finite element solution From the formula given by Ha [24]

10 elements 20 elements 30 elements

Tb (1C) 142.55 139.16 138.55 —

Pcr (KN) 31.009 30.272 30.139 30.034

Table 2

Comparison of frequency and loss factor

Description Finite element solution Exact values by Rao [21]

10 elements 20 elements 40 elements

f (Hz) 1307.04 1305.77 1305.53 1309

Z 0.006935 0.006898 0.006898 0.006965

Bottom layer

Core 

FGM layer

Fig. 4. Finite element mesh for layer wise temperature evaluation.

100

8 
   5

  3
   

16

E1 = E2 = 20.6e10N / m2, G*c = 0.98e10N / m2

�1 = �2 = 7850Kg / m2, �c = 2600Kg / m2, � = 0.1 

Fig. 3. Sandwich beam configuration for validation purpose [21].
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Table 2 compares the first mode resonant frequency (f) of the above beam and the loss factor (Z) with exact
values given by Rao [21]. There is a good agreement between the exact values and finite element solution.

3.2. Thermal analysis

Thermal environments will influence the buckling and frequency behavior of a structure. This effect can be
accounted for by the estimation of thermally induced prestresses. In the present study, layer-wise temperatures
in the sandwich beam are calculated using the four-noded rectangular elements. Fig. 4 shows the finite element
mesh for temperature evaluation. Each layer is meshed with two rectangular elements in thickness direction
and 30 elements are used in the length direction. Three different thermal boundary conditions (TBC1, TBC2
and TBC3) are considered for analysis as shown in Fig. 5.

The further analysis has been carried out for the following cases of temperature boundary condition.
(1)
 TBC1–FGM sandwich beam heated at one edge.

(2)
 TBC2–FGM sandwich beam at the top surface.
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Fig. 5. Temperature boundary conditions.
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(3)
 TBC3–FGM sandwich beam insulated at two edges and specified temperature at top and bottom such that
temperature gradient is developed.
The relevant elemental matrices indicated in Eq. (7) are assembled by applying the desired boundary
condition. The nodal temperatures are obtained by solving the following equation:

KG
1 TG þ KG

2 TG ¼ PG
1 (14)

with the superscript G indicating corresponding global matrices. The nodal temperatures on the middle line of
each layer are extracted and these are considered to be approximate layer temperatures for prestress
estimation.

The temperature distributions in the sandwich beam for the two different cases of thermal boundary
conditions are shown in Fig. 6. The graphs are drawn for a specified temperature 160 1C for the given
boundary condition. Fig. 6(a) shows temperature variation along the length of the beam with thermal
boundary condition TBC1. The temperature falls down from the specified temperature (160 1C) at right end
following a second-order curve as indicated in Fig. 6(a). No appreciable variation of temperature in thickness
direction of the beam can be observed with thermal boundary condition TBC1. Fig. 6(b) shows the variation
of temperature across the thickness of the beam with thermal boundary condition TBC2. The temperature at
any cross section along the length of the beam remains almost constant in the top layer (160 1C), drops linearly
in viscoelastic core and remains almost constant in the bottom layer. Temperature along the length of the
beam is a constant with thermal boundary condition TBC3. Moreover similar temperature pattern is observed
in case of TBC2.

3.3. Static thermal buckling analysis of functionally graded sandwich beam having constrained viscoelastic layer

and clamped– clamped boundary conditions

Having validated the present model to a certain extent in present study an attempt has been made to study
the thermal buckling behavior of FGM viscoelastic sandwich beam made up of mixture of metal and ceramic.
The viscoelastic core material used is EC2216. The evaluation of thermal buckling temperature is based on
classical stability equation involving the structural stiffness matrix, KG

nR, and initial stiffness matrix, KG
gn.

½KG
nR� þ l½KG

gn� ¼ 0. (15)
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Fig. 7. Iterative algorithm for finding buckling temperatures when G� and material properties are temperature dependent.
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Fig. 6. (a) Temperature variation along the length of the sandwich beam for TBC1 and (b) temperature variation across the thickness of

the sandwich beam for TBC3.
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The buckling eigenvalues and buckling mode shapes are computed using the simultaneous iteration
technique. A typical configuration of the functionally graded viscoelastic beam is assumed to be ceramic rich
on the top surface and metal rich on the bottom surface. The FGM structure material properties are
dependent on temperature. In addition complex shear modulus of the viscoelastic core G* is also a function of
temperature. The thermal buckling study has been carried out by accounting the variation of material
properties with respect to temperature. As the problem becomes nonlinear, iterative procedure has been
adopted. The overall procedure followed for the determination of the converged thermal buckling temperature
is best understood from the flow chart presented in Fig. 7.

First to start with, assume a particular temperature, and temperature dependent material properties
evaluate l. The procedure starts with two initial guesses, namely points 1 and 2 as shown in Fig. 7. The
temperature Tl corresponding to l1 ¼ 1, is found by linear interpolation or extrapolation using the points 1
and 2 and the improved guess 3 is found by reevaluating the value of l1 at the temperature Tl . Now 2 and 3
will be new guess points for the next iteration. The procedure is repeated by using the last two guesses till the
two guesses converge to the buckling temperature Tb and l1 ¼ 1.
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Thermal buckling analysis of FGM beam is carried out in two steps. First, the heat conduction equation is
solved for temperature distribution for different temperature boundary condition across the thickness of the
shell. Variation of temperature along the length of the shell is also calculated. The thermal material property is
dependent on temperature and hence a converged temperature distribution is obtained. Based on the
converged temperature distribution the mechanical and thermal properties are evaluated.

An exercise is taken up to illustrate the necessity of considering temperature dependent material properties
of FGM structures and complex shear modulus of viscoelastic core. Following two cases are considered.

Case A: Temperature distribution obtained is based on the thermal properties assumed at room
temperature. Thermal buckling temperature is computed based on the material properties at room
temperature. The complex shear modulus value for EC2216 is 344.8MPa at room temperature.

Case B: Thermal buckling temperatures are computed based on the procedure illustrated in flow chart (see
Fig. 7). It accounts for temperature dependent material properties of structure and temperature dependent
complex shear modulus of EC2216.

The results are presented in Tables 3 and 4 for FGM sandwich beam viz., SUS304-Al2O3 for temperature
boundary conditions TBC2 and TBC3. The critical buckling temperature estimated according to procedure of
Case A is higher when compared to the buckling temperature computed using the procedure of Case B. Thus
buckling temperatures obtained as per Case B procedure are more conservative. From Tables 3 and 4, it is
concluded that the thermal buckling strength has been reduced while taking into temperature dependent
material properties. For temperature boundary condition TBC1 thermal buckling results are reported in
Table 5. It is seen that thermal buckling strength is higher in case of TBC1. In this case critical temperature is
higher than the operating temperature limit of VEL material (EC2216) for higher core thickness to stiff later
ratios. Hence, buckling and vibrations studies not reported here. But it is visible from Table 5 that effect of
temperature dependent material properties is felt more at higher buckling temperature and higher power law
index approaching to homogeneous ceramic side. Tables 3 and 4 show the converge lowest buckling
temperature for SUS304-Al2O3 FGM sandwich beam having EC2216 has VEL core for the TBC2 and TBC3
of temperature boundary condition for various power law index. Here power law index n ¼ 0.0 corresponds to
an isotropic shell with properties corresponds to that of metal (SUS304) and n ¼ 1000.0 corresponds to FGM
beam purely of ceramic material (Al2O3). The power law indexes value n other than two extreme values govern
the distribution of properties of metal and ceramic mixture in FGM stiff layer. Variation of the composition of
metal and ceramic is linear for power law index n ¼ 1.0. From Tables 3 and 4, it is found that as the value of
power law index n increases the critical buckling temperature increases as it approaching towards the
homogeneous ceramic composition for all tc/ts ratios. Such trend is observed because of coefficient of thermal
expansion of ceramic is lower than metal. In addition as the thickness ratio of core to the stiff layer increases
the thermal buckling strength of FGM sandwich beam increases. Further it is seen that TBC2 at slight higher
Table 3

Converged lowest critical buckling temperature in 1C for SUS304-Al2O3 FGM sandwich beam having EC2216 has a VEL core and TBC2

type of boundary condition for various power law index

Power law index n Case A Case B

G�c ¼ C G�c ¼ f ðtÞ

tc=ts ¼ 1 tc=ts ¼ 2 tc=ts ¼ 3 tc=ts ¼ 1 tc=ts ¼ 2 tc=ts ¼ 3

0.0 91.90 147.58 213.84 83.69 122.46 165.35

0.2 94.36 151.75 219.79 85.60 125.20 168.89

0.5 98.19 158.44 229.60 88.65 129.82 175.11

1.0 104.39 169.60 246.33 93.66 137.76 186.16

2.0 114.51 188.38 275.05 101.96 151.37 205.60

5.0 128.11 214.55 315.99 113.15 170.43 233.56

10.0 132.00 222.29 328.31 116.36 176.06 241.98

1000.0 132.41 223.11 329.63 116.72 176.65 242.88
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Table 4

Converged lowest critical buckling temperature in 1C for SUS304-Al2O3 FGM sandwich beam having EC2216 has a VEL core and TBC3

type of boundary condition for various power law index

Power law index n Case A Case B

G�c ¼ C G�c ¼ f ðtÞ

tc=ts ¼ 1 tc=ts ¼ 2 tc=ts ¼ 3 tc=ts ¼ 1 tc=ts ¼ 2 tc=ts ¼ 3

0.0 90.08 139.79 196.00 84.01 118.67 153.04

0.2 92.49 143.74 201.52 85.93 121.24 156.04

0.5 96.22 150.09 210.65 88.96 125.53 161.23

1.0 102.27 160.69 226.26 93.91 132.80 170.36

2.0 112.19 178.93 253.35 101.98 145.09 188.03

5.0 125.57 203.89 292.72 112.72 161.99 213.72

10.0 129.43 211.43 304.79 115.82 166.91 221.52

1000.0 129.84 212.23 306.08 116.15 167.43 222.35

Table 5

Converged lowest critical buckling temperature in 1C for SUS304-Al2O3 FGM sandwich beam having EC2216 has a VEL core and TBC1

type of boundary condition for various power law indexes

Power law index n Case A Case B

G�c ¼ C G�c ¼ f ðtÞ

tc=ts ¼ 1 tc=ts ¼ 2 tc=ts ¼ 3 tc=ts ¼ 1 tc=ts ¼ 2 tc=ts ¼ 3

0.0 305.28 — — 296.56 — —

0.2 334.79 — — 324.63 — —

0.5 380.15 — — 368.61 — —

1.0 488.86 — — 460.75 — —

2.0 725.56 — — 580.25 — —

5.0 1130.98 — — 798.84 — —

10.0 1531.25 — — 1020.25 — —

1000.0 1548.58 — — 1021.58 — —
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buckling strength as compared to TBC3. It is also found from the results when the shear modulus is higher the
core thickness strongly influences buckling temperature. In contrast if the shear modulus is low the core
thickness does not influence buckling temperature much. Similar trend in mechanical critical buckling load
can be observed when the formula given by Ha [24] is used.

3.4. Effect of temperature on the free vibration frequency and modal loss factor of FGM sandwich beam and

clamped– clamped boundary conditions

To understand the behavior of the natural frequency variation with respect to temperature, studies have
been carried out on SUS304-Al2O3 FGM sandwich beam. The temperature on the outer surface is varied in
steps of suitable increments and the highest temperature for the study is limited to the lowest thermal buckling
temperature for the beam configuration and FGM composition (or power law index n). Based on the
converged temperature distribution, the thermal load vector, total initial stresses and hence the geometric
stiffness matrix is computed. This initial stiffness matrix is added to the FGM sandwich beam stiffness (real)
matrix and along with mass matrix leads to the following eigenvalue problem.

½KG
R þ KG

g �f� o2MGf ¼ 0 (16)
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The modal loss factor for jth mode fj can be found at any given temperature from the following equation:

Zj ¼
fT

j KG
Rfj

fT
j ðK

G
I þ KG

g Þfj

, (17)

where Zj is the loss factor for the jth mode and KG
R; KG

I are the real and imaginary parts of global stiffness
matrix KG, respectively. ½KG

g � is evaluated at the given temperature. In present case in order to see the effect of
temperature dependent shear modulus and material properties on frequency and loss factors following cases
are considered for similar temperature boundary condition. To start with, study has been carried out by
considering the shear modulus of VEL core and material properties at room temperature. The shear modulus,
loss factor values of viscoelastic core materials namely EC2216 at 30 1C and at 100Hz are 620.5MPa, 0.3 [12].

Fig. 8 shows the variation of frequency and modal loss factor of a sandwich beam with temperature for core
(EC2216) thickness for power law index n ¼ 0, 1.0 and 1000.0, respectively. Fig. 8 shows the variation of
frequency and loss factor with temperature for first four modes of the sandwich beam with different power law
index as a parameter with thermal boundary condition TBC3. The shear modulus of the core is assumed to
remain constant with respect to temperature and properties of FGM layer also at room temperature. Fig. 8(a),
(c) and (d) shows that natural frequencies increases with increase in power law exponent n, as it approaching
towards the homogeneous ceramic composition. This trend has been expected because of Young’s modulus of
ceramic is higher than that of metal. Further it is seen that mode 1 it is the mode corresponding to the lowest
thermal buckling temperature. Mode 1 is associated with reasonably high bending strain energy. As the
temperature increases fall in natural frequencies gradually and continuously. There is no appreciable drop in
frequency is observed with respect to temperature for all modes. This behavior is noticed for all n. Further the
characteristic variation of the natural frequency with respect to temperature depends on the mode numbers.
The buckling temperatures of the higher modes are higher. Similarly for higher modes the partial fall in
frequency for the initial increase in temperature is to be noted. This is because the buckling temperature for
higher modes is higher. In addition there may be the dominating influence of the bending strain energy and the
effect of temperature rise is less. Thus it is clear that the effect of temperature is felt more for the modes
corresponding to the lowest thermal buckling temperature. The loss factor for the first mode of the beam
gradually increases with respect to temperature reaching a very high value when temperature approaches the
buckling temperature for any given thickness of the beam. This trend is expected because the value of the
denominator in the expression for modal loss factor decreases as the temperature increases due to decrease in
the total stiffness of the sandwich beam. As the power law index n increases there is slight increase in modal
loss factor. Further study has been carried out for tc/ts ¼ 2.0 and tc/ts ¼ 3.0. Similar discussion hold good for
tc/ts ¼ 2.0 and 3.0. Figs. 9 and 10 show that as increase in the core thickness results in increase in modal loss
factors appreciably.

Further study has been carried out by accounting temperature dependent shear modulus of the core and
material properties of FGM stiff layer. The temperature dependent plots of G�c and Z for the EC2216 are
given in Ref. [10]. A curve is fitted to the plots given in Ref. [10] such that values of G�c and Z can be obtained
from it at any temperature in the operating range of temperatures. These curves are used for studying the
buckling, frequency and loss factor variations with temperature when temperature dependent properties of the
core are used. Fig. 11 shows the variation of natural frequency and loss factor for FGM sandwich beam for
n ¼ 0.0, 1.0, 1000.0, respectively, with EC2216 as a core material for TBC3 type of temperature boundary
condition. It can be seen from Figs. 11(a) and 8(a) that first mode frequency variation is almost coincident for
both the cases i.e. with constant shear modulus case and temperature dependent shear modulus case of the
core. Remaining higher modes deviate appreciably when temperature dependent shear modulus is used. The
effect of temperature dependent shear modulus and FGM properties causing frequencies comes down to zero
at earliest buckling temperature as compared to previous one. This effect is felt more for higher tc/ts ratios.
Here one can observe a fall in frequency appreciably for higher modes with respect to temperature as
compared to Fig. 8. Figs. 11(b), (d) and (f) show the variation of loss factor with temperature for n ¼ 0.0, 1.0,
1000.0, respectively, for tc/ts ¼ 1.0. From Figs. 11 and 13 it is seen that loss factor pattern is much different
when temperature dependent shear modulus is used. It is seen from Figs. 11 and 13 that all mode shape
behavior appears as a curve type. The first mode increases continuously and attains a higher value near
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Fig. 8. Variation of frequency and loss factors for VEL sandwich SUS304-Al2O3 FGM beam temperature independent shear modulus for

core EC2216 (tc/ts ¼ 1.0).
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Fig. 9. Variation of frequency and loss factors for VEL sandwich SUS304-Al2O3 FGM beam temperature independent shear modulus for

core EC2216 (tc/ts ¼ 2.0).
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Fig. 10. Variation of frequency and loss factors for VEL sandwich SUS304-Al2O3 FGM beam temperature independent shear modulus

for core EC2216 (tc/ts ¼ 3.0).
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buckling temperature. Loss factors of remaining higher modes deviate appreciably when temperature
dependent shear modulus is used. Here modal loss factor increase upto certain temperature then decreases and
again starts increasing near to the critical buckling temperature. Similar behavior has been observed for other
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power law index n ¼ 1.0 and 1000.0 shown in Figs. 11(d) and (f). This fact can be ascribed by looking the
characteristics curve of EC2216 for Z as shown in Fig. 12 [12]. It is seen that the value of Z for a viscoelastic
material increases initially with temperature and reaches a peak value and there after reduces.

Same discussion holds good for other type of tc/ts ratios and power law index n shown in Figs. 13 and 14.
Increase in the core thickness results in increased modal loss factor of the FGM sandwich beam significantly.
By increasing in core thickness magnitude of frequency are increases marginally. The modal loss factors
increases up to a certain temperature and then start decreases. As the power law index n increases the modal
loss factor also increases marginally. So it is concluded that consideration of temperature dependent shear
modulus causes the buckling strength reduces causing an early drop in frequency with respect to temperature.
So in order to do accurate analysis it is preferable to consider temperature dependent material properties.

4. Conclusion

A thermal buckling and vibration analysis of functionally graded sandwich beam having constrained
viscoelastic layer has been carried out by finite element method. The FGM beam is graded in the thickness
direction and a simple power law index will govern the metal–ceramic constituents profile across the thickness.
The FGM sandwich beam is assumed as a multilayered beam with each layer to possess homogeneous
isotropic properties; this model forms the basis for evaluating the material constitutive matrix. The thermal
material property is dependent on temperature and hence a converged temperature distribution is obtained.
Based on the converged temperature distribution the mechanical properties and thermal property are
evaluated. The shear modulus of the viscoelastic core is also temperature dependent. The converged
temperature distribution will be the thermal loading on the beam. Thermal buckling temperature is evaluated
until convergence is obtained. Effect of temperature dependent material properties of FGM layer as well as
temperature dependent shear modulus on the buckling and vibration behavior has been investigated for
EC2216 as a core materials. The following conclusions are arrived from present study.
1.
 The magnitude of the lowest buckling temperature of FGM sandwich beam greatly depends on the
composition of the metal–ceramic constituent. The thermal buckling temperature depends on the
coefficient of thermal expansion. Materials with lower coefficient of thermal expansion will have high
thermal buckling temperature.
2.
 The critical buckling temperature for a FGM sandwich beam increases as the power law index n increases.

3.
 Thermal buckling strength of the FGM sandwich beam has been reduced when the temperature-dependent

properties are taken into consideration.

4.
 As expected, by increasing the ratio of the core to stiff layer thermal buckling temperature increases.
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Fig. 13. Variation of frequency and loss factors for VEL sandwich SUS304-Al2O3 FGM beam with temperature dependent shear modulus

for core EC2216 (tc/ts ¼ 2.0).
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Fig. 14. Variation of frequency and loss factors for VEL sandwich SUS304-Al2O3 FGM beam with temperature dependent shear modulus

for core EC2216 (tc/ts ¼ 3.0).
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5.
 Natural frequency of the FGM sandwich beam increases as power law index n increases when approaching
to homogeneous ceramic side.
6.
 The effect of temperature on the natural frequency of FGM sandwich beam is to reduce the natural
frequency with increase in temperature.
7.
 The effect of temperature dependent shear modulus of the viscoelastic core is felt predominantly at higher
modes. The loss factor pattern is much different when temperature dependent shear modulus is used.
Effects of temperature on loss factors are more pronounced for material EC2216 whose shear modulus
varies more dramatically investigated over the temperature range.
8.
 For the buckling temperature range considered in the present study Z was increasing with temperature. In
addition real stiffness of the system is falling with temperature. Hence in general the damping was
increasing with temperature. It is felt that this conclusion may not hold good for the range of temperature
where Z decreases with temperature.

Appendix

Strain displacement relations

The strain terms in the array of generalized strains e� are related to the displacements as follows:

y0 ¼
d2w

dx2
,

ei
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; i ¼ 1; 2,
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D� ¼

0

bE1
eff t

1

0

bE2t2

0

0
BBBBBB@

1
CCCCCCA
; st ¼

bt1s1t 0

0 bt2s2t

 !
,

Bg ¼
N11;x N12;x 0 0 N21;x N22;x 0 0

N11;x N12;x 0 0 N21;x N22;x 0 0

 !
.

Nij ; i ¼ 1; 2 and j ¼ 1; 2 are the shape functions [14] suffix x indicates the derivative with respect to x.
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